FraudulentLinearRegModel.ipynb - Colab

v Introduction:

5/1/24, 11:39 PM

The objective of this project is to develop a fraud detection system for a bank web application.

The system aims to detect fraudulent transactions by analyzing various features associated with

each transaction. By implementing machine learning techniques, specifically logistic regression,

we aim to classify transactions as fraudulent or legitimate based on their characteristics.

Data Overview:

The dataset used for this project was obtained from Kaggle and consists of transaction data

with the following features:

Distance from Home

Distance from Last Transaction
Ratio to Median Purchase Price
Repeat Retailer

Used Chip

Used Pin Number

Online Order

Fraud (Target Variable)

Data Preprocessing:

e The dataset is loaded using pandas and examined to understand its structure and features.

» Features are split into independent variables (X) and the target variable (y).

e Data is split into training and testing sets using a ratio of 80:20, with stratification to

maintain class balance.

import pandas as pd

from
from
from
from

https://colab.research.google.com/drive/TwtRuBf_mGi9mgMN_70_sA80LI0I2gr9c#scrollTo=Km1TuVI7ZLNQ9

sklearn.model_selection import train_test_split
sklearn. linear_model import LogisticRegression

sklearn.metrics import accuracy_score, confusion_matrix, classification_repo

sklearn.model_selection import GridSearchCV

Page 1 of 11

FraudulentLinearRegModel.ipynb - Colab 5/1/24, 11:39 PM

path = '/content/data.csv'
data = pd.read_csv(path)
X = data.drop('fraud', axis=1) # Features

y = data['fraud']

Split the data into training and testing sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_s

print(data.columns)

Model Training:

* A logistic regression model is trained on the training data.

e Hyperparameter tuning is performed using grid search with cross-validation to find the
optimal value of the regularization parameter (C).

The best model is selected based on the hyperparameters yielding the highest accuracy on
the validation set.

v Hyberparam

param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100]}
modell = LogisticRegression(max_iter=1000)

grid_search = GridSearchCV(estimator=modell, param_grid=param_grid, cv=5, scoring:
grid_search.fit(X_train, y_train)

E» GridSearchCv

'» estimator: LogisticRegression!

é»LogisticRegressioné

https://colab.research.google.com/drive/TwtRuBf_mGi9mgMN_70_sA80LI0I2gr9c#scrollTo=Km1TuVI7ZLNQ9 Page 2 of 11

FraudulentLinearRegModel.ipynb - Colab 5/1/24, 11:39 PM

best_params = grid_search.best_params_
print("Best Hyperparameters:", best_params)

Best Hyperparameters: {'C': 100}

best_model = LogisticRegression(max_iter=1000, C=best_params['C'])

Train the model on the training data
best_model.fit(X_train, y_train)

év LogisticRegression

éLogisticRegression(C=100, max_iter=1000)§

import joblib

Assuming “best_model’ is your trained model
joblib.dump(best_model, 'fraud_detection_model.joblib')

['fraud_detection_model.joblib']

https://colab.research.google.com/drive/TwtRuBf_mGi9mgMN_70_sA80LI0I2gr9c#scrollTo=Km1TuVI7ZLNQ9 Page 3 of 11

FraudulentLinearRegModel.ipynb - Colab 5/1/24, 11:39 PM

y_pred = best_model.predict(X_test)

Evaluate the model

accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)

Print the evaluation metrics
print("Accuracy:", accuracy)

print("Confusion Matrix:\n", conf_matrix)
print("Classification Report:\n", class_report)

Accuracy: 0.958725
Confusion Matrix:
[[181277 1280]
[6975 10468]]
Classification Report:

precision recall fl-score support

0.0 0.96 0.99 0.98 182557

1.0 0.89 0.60 0.72 17443

accuracy 0.96 200000
macro avg 0.93 0.80 0.85 200000
weighted avg 0.96 0.96 0.96 200000

These metrics provide insights into the model's performance:

e Accuracy: The proportion of correctly predicted instances is approximately 95.87%.

e Confusion Matrix: Shows the counts of true positive, false positive, true negative, and false
negative predictions. In this case, there are 181,277 true negatives, 1,280 false positives,
6,975 false negatives, and 10,468 true positives.

e Classification Report: Provides precision, recall, F1-score, and support for each class
(fraudulent and legitimate transactions). The model achieved high precision (0.96) and
recall (0.99) for legitimate transactions (class 0), indicating a low false positive rate.

Overall, the model demonstrates strong performance in identifying legitimate transactions, but
there is some room for improvement in detecting fraudulent transactions, particularly in
increasing recall to capture more instances of fraud while minimizing false negatives.

https://colab.research.google.com/drive/TwtRuBf_mGi9mgMN_70_sA80LI0I2gr9c#scrollTo=Km1TuVI7ZLNQ9 Page 4 of 11

FraudulentLinearRegModel.ipynb - Colab 5/1/24, 11:39 PM

v Model Interpretation:

e Feature importance is analyzed using two methods: ELI5 and SHAP.

e ELIS library is used to visualize feature weights, indicating their impact on the model's
predictions.

» SHAP (SHapley Additive exPlanations) values are calculated to explain the impact of each
feature on individual predictions.

e Feature importance is ranked based on the mean absolute SHAP values, showing the most
influential features in detecting fraud.

I'pip install eli5

import elib5
eli5.show_weights(best_model, feature_names=1ist(X.columns))

y=1.0 top features

Weight’> Feature
+6.662 online_order
+0.861 ratio_to_median_purchase_price
+0.025 distance_from_last_transaction
+0.015 distance_from_home
-0.615 repeat_retailer
-1.042 used_chip
-10.374 <BIAS>
-13.605 used_pin_number

https://colab.research.google.com/drive/TwtRuBf_mGi9mgMN_70_sA80LI0I2gr9c#scrollTo=Km1TuVI7ZLNQ9 Page 5 of 11

FraudulentLinearRegModel.ipynb - Colab

5/1/24, 11:39 PM

eli5_df = eli5.explain_weights_df(best_model, feature_names=1ist(X.columns))

eli5_df

target feature
0 1.0 online_order
1 1.0 ratio_to_median_purchase_price
2 1.0 distance_from_last_transaction
3 1.0 distance_from_home
4 1.0 repeat_retailer
5 1.0 used_chip
6 1.0 <BIAS>
7 1.0 used_pin_number

'pip install shap

import shap
import matplotlib.pyplot

https://colab.research.google.com/drive/TwtRuBf_mGi9mgMN_70_sA80LI0I2gr9c#scrollTo=Km1TuVI7ZLNQ9

as plt

weight
6.661864
0.861299
0.025494
0.015148
-0.615098
-1.041773
-10.374283

-13.605163

Page 6 of 11

FraudulentLinearRegModel.ipynb - Colab 5/1/24, 11:39 PM

feature_names = ['Distance from Home', 'Distance from Last Transaction', 'Ratio t
'Repeat Retailer', 'Used Chip', 'Used Pin Number', 'Online Order

Initialize a SHAP explainer
explainer = shap.Explainer(best_model, X_train)

Calculate SHAP values for all features in the training data
shap_values = explainer.shap_values(X_train)

Visualize feature importance
shap.summary_plot(shap_values, X_train, plot_type='bar', feature_names=feature_na

fig, ax = plt.gcf(), plt.gca()

Customize the x—-axis label
ax.set_xlabel('Average impact on model output', fontsize=12)

Display the plot
plt.show()

Online Order

Used Pin Number

Ratio to Median Purchase Price
Used Chip

Distance from Home

Distance from Last Transaction

Repeat Retailer

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Average impact on model output

https://colab.research.google.com/drive/TwtRuBf_mGi9mgMN_70_sA80LI0I2gr9c#scrollTo=Km1TuVI7ZLNQ9 Page 7 of 11

FraudulentLinearRegModel.ipynb - Colab 5/1/24, 11:39 PM

Feature Importance from ELI5:

According to ELI5, the most influential features for predicting fraud are "Online Order," "Ratio to
Median Purchase Price," and "Distance from Last Transaction." These features have positive

weights, indicating that an increase in their values leads to a higher likelihood of fraud.

The feature "used_pin_number" has a weight of -13.605023 according to the ELI5 explanation.
This negative weight indicates that an increase in the value of this feature decreases the log-
odds of the target variable being 1 (fraudulent). In other words, transactions where the
"'used_pin_number" feature is present are less likely to be classified as fraudulent by the model.

Feature Importance from SHAP:

SHAP values indicate that "Online Order" and "Used Pin Number" are the most important features
for predicting fraud, followed by "Ratio to Median Purchase Price." These features have the
highest mean absolute SHAP values, indicating their strong influence on model predictions.

Consistent Findings:

Both ELI5 and SHAP identify "Online Order" as one of the most important features for predicting
fraud, with a positive impact. This consistency strengthens the interpretation of this feature's
significance in detecting fraudulent transactions.

v Testing

e |egitimate case

https://colab.research.google.com/drive/TwtRuBf_mGi9mgMN_70_sA80LI0I2gr9c#scrollTo=Km1TuVI7ZLNQ9 Page 8 of 11

FraudulentLinearRegModel.ipynb - Colab 5/1/24, 11:39 PM

def predict_fraud(transaction_data, model):
Preprocess transaction data
transaction_df = pd.DataFrame(transaction_data, index=[0]) # Convert input t

Use the trained model to predict
probability_fraud = model.predict_proba(transaction_df)[:, 1]

Apply threshold (e.g., 0.5) to classify as fraud or not
threshold = 0.5
if probability_fraud >= threshold:
prediction = "Fraudulent"
else:
prediction = "Legitimate"

return prediction, probability_fraud[0]

Example usage:

transaction = {
'distance_from_home': 10,
'distance_from_last_transaction': 5,
'ratio_to_median_purchase_price': 0.8,
'repeat_retailer': 0,
'used_chip': 1,
‘used_pin_number': 1,
'online_order': 0

fraud_prediction, probability_score = predict_fraud(transaction, best_model)
print("Prediction:", fraud_prediction)
print("Probability of Fraud:", probability_score)

Prediction: Legitimate
Probability of Fraud: 3.579424776732348e-11

¢ Fraudulent case

https://colab.research.google.com/drive/TwtRuBf_mGi9mgMN_70_sA80LI0I2gr9c#scrollTo=Km1TuVI7ZLNQ9 Page 9 of 11

FraudulentLinearRegModel.ipynb - Colab 5/1/24, 11:39 PM

fraudulent_transaction = {
'distance_from_home': 55,
'distance_from_last_transaction': 19,
'ratio_to_median_purchase_price': 3.0,
'repeat_retailer': 0,
'used_chip': 0,
'used_pin_number': 0,
'online_order': 1

¥

fraud_prediction, probability_score = predict_fraud(fraudulent_transaction, best_
print("Prediction:", fraud_prediction)
print("Probability of Fraud:", probability_score)

Prediction: Fraudulent
Probability of Fraud: 0.547106013655952

Summary

Our analysis identified key features that significantly contribute to the prediction of fraudulent
transactions in our banking system. Leveraging these findings can provide several benefits to our
organization, including:

Improved Fraud Detection Systems: By incorporating the identified features into our fraud
detection algorithms, we can enhance our ability to identify and prevent fraudulent transactions,
thereby minimizing financial losses and protecting our assets. Targeted Risk Mitigation
Strategies: Understanding the factors associated with fraud enables us to develop more targeted
risk mitigation strategies. By focusing on the most influential features, we can allocate resources
effectively and implement measures to mitigate the risk of fraudulent activities. Enhanced
Customer Experience: A robust fraud detection system not only protects our organization but
also enhances the experience for our customers. By promptly detecting and resolving fraudulent
transactions, we can build trust and confidence among our customers, leading to increased
satisfaction and loyalty. Cost Savings: Effective fraud detection can result in significant cost
savings by reducing financial losses associated with fraudulent activities. By identifying and
preventing fraudulent transactions early, we can avoid chargebacks, refunds, and other expenses
related to fraud.

https://colab.research.google.com/drive/TwtRuBf_mGi9mgMN_70_sA80LI0I2gr9c#scrollTo=Km1TuVI7ZLNQ9 Page 10 of 11

FraudulentLinearRegModel.ipynb - Colab 5/1/24, 11:39 PM

Conclusion:

In conclusion, this project demonstrates the development of a fraud detection system for a bank
web application using logistic regression. By leveraging machine learning techniques and
interpreting model predictions, the system can effectively identify fraudulent transactions and
mitigate financial risks. Further enhancements and refinements can be made to optimize the
system's performance and ensure robustness in real-world scenarios.

https://colab.research.google.com/drive/TwtRuBf_mGi9mgMN_70_sA80LI0I2gr9c#scrollTo=Km1TuVI7ZLNQ9 Page 11 of 11

